

Dual-band Unified Exploration of Three CMZ clouds (DUET) -- I.the 3mm and 1.3mm Continuum Emission and Dense Cores in the Dust Ridge cloud e

Xihe Liu (刘羲和)

Shandong University, Jinan, China 2023.09.22

Context

1.Backgrounds 1.1 A Brief Introduction to the Central Molecular Zone (CMZ) 1.2 Features of CMZ 1.3 How do we find Cloud 'e'? 1.4 Why chose ALMA bands 3 & 6? 2. Data Analysis and Results 2.2 Calculation of Cloud Core Mass and Spectral Index 2.3 Fragmentation of Filaments 2.4 Spatial Core Distribution & Mass Segregation **3.** Summary

2.1 Calculation of Spectral Index in each Pixel & Identification of Cloud Cores

1. Backgrounds

A Brief Introduction to the Central Molecular Zone (CMZ)

Galactic Centre 8.1 kpc Solar neighbourhood **Catherine Zucker** João Alves Talk The Solar Neighborhood in the Age of Gaia

Chapter 3, Protostars and Planets VII

Features of CMZ

1. High density (10⁴ cm⁻³), high temperature (70-100K or higher), strong turbulence (FWHM~10-20 km/s) in the gas

Physical Quantity Distance $[kpc]^{(a)}$ SFR $[M_{\odot}yr^{-1}]^{(b)}$ $\Sigma_{\rm gas} \, [\log_{10}({\rm M_{\odot}pc^{-2}})]^{(c)}$ $\Sigma_{\rm SFR} \ [\log_{10}({
m M}_{\odot}{
m yr}^{-1}{
m kpc}^{-1}{
m kpc}^{-1}$ $\Sigma_* [\log_{10}(M_{\odot}pc^{-2})]^{(e)}$ $t_{
m dep} \, [{
m Gyr}]^{(f)}$ $t_{
m dyn} \, [
m Myr]^{(g)}$ $B[\mu G]^{(h)}$ Metallicity, $Z^{(i)}$ CRIR $[\log_{10}(s^{-1})]^{(j)}$ Linewidth, $\sigma(10 \text{pc})$ [km s⁻ Linewidth scaling, $b^{(m)}$ IMF slope, $\alpha^{(n)}$ DGMF, $f(n > 10^4)^{(o)}$ $T_{
m gas} \, [{
m K}]^{(p)}$ $T_{\rm dust} \, [\mathbf{K}]^{(q)}$ $P_{\mathrm{ext}}/k_{\mathrm{B}}~[\mathrm{K~cm^{-3}}]^{(r)}$

	CMZ	Solar Neighbourhood	Extragalactic CMZs	z \sim
	8.2	0.1 - 0.5	3500 - 20000	$\sim 10^{6}$
	0.07 (0.012-0.14)	0.002	0.001 - 0.08	1-1
	3.1 (2.8-3.2)	1.5	0.6-3	1.5-
$^{2})]^{(d)}$	0.3 (-0.4-0.6)	-2.5	-3-0	-1.5
	3.9	1.5	3.4-3.9	1-
	0.5 (0.4-1.5)	1	0.3 - 2.6	0.2
	5	220	4-40	c
	10-1000	1-100	?	c
	2	1	${\sim}2$	0.2-
	-15 to -13	-17 to -15	?	c
$^{-1}]^{(l)}$	12	3	10	20-
	0.7	0.5	?	c
	≤2.35	2.35	?	c .
	0.95	0.03	?	c
	50-100	10-30	50-250	c
	20-50	10-30	30-45	c
	$\gtrsim 10^7$	$\gtrsim 10^5$	10^{6} - 10^{8}	c

Henshaw et al. 2023

How do we find Cloud 'e'?

Why choose ALMA Band 3&6?

ALMA's Central Array on the Chajnantor plains Credit: C. Padilla, NRAO/AUI/NSF

Observation dates	Array configurations	Baseline ranges	No. of antennas	Bandpass/flux calibrators	Phase calibrators	Targets
2018-11-23	C43-4	15.1 m–1.4 km	47	J1924-2914	J1744-3116	cloud e
2018-11-27	C43-4	15.1 m–1.3 km	44	J1617-5848	J1744-3116	the 20 km s ^{-1} cloud, Sgr C
2018-11-27	C43-4	15.1 m–1.3 km	44	J1617-5848	J1744-3116	the 20 km s ^{-1} cloud, Sgr C
2018-11-27	C43-4	15.1 m–1.3 km	45	J1924-2914	J1744-3116	the 20 km s ^{-1} cloud, Sgr C
2019-08-27	C43-7	38.4 m–3.6 km	48	J1924-2914	J1744-3116	cloud e
2019-08-28	C43-7	38.4 m–3.6 km	48	J1924-2914	J1744-3116	the 20 km s ^{-1} cloud, Sgr C
2019-08-28	C43-7	38.4 m–3.6 km	48	J1924-2914	J1752-2956	the 20 km s ^{-1} cloud, Sgr C
2019-08-29	C43-7	38.4 m–3.6 km	47	J1517-2422	J1744-3116	the 20 km s ^{-1} cloud, Sgr C
2019-08-29	C43-7	38.4 m–3.6 km	46	J1924-2914	J1744-3116	the 20 km s ^{-1} cloud, Sgr C
2019-08-30	C43-7	38.4 m–3.6 km	47	J1924-2914	J1744-3116	the 20 km s ^{-1} cloud, Sgr C
2021-07-30	C43-7	46.8 m–5.2 km	41	J1924-2914	J1744-3116	cloud e
2021-08-02	C43-7	46.8 m–5.2 km	37	J1924-2914	J1744-3116	the 20 km s ^{-1} cloud, Sgr C

 Table 1. Summary of the ALMA Band 3 observations.

Table 2. Properties of the Band 3 and Band 6 continuum images of cloud e.

ALMA Bands	Central frequencies (GHz)	Initial beams (B _{maj} ×B _{min} , PA)	Minimum common beam $(B_{maj} \times B_{min}, PA)$	Sensitivity ^{<i>a</i>} (μ Jy beam ⁻¹)	Mass sensitivity ^b $(M_{\odot} \text{ beam}^{-1})$
Band 3	93.6	0!'305×0!'203, -85.76°	0!''306×0!''206, -84.64°	8.6	1.17
Band 6	226.0	0!'251×0!'172, -55.88°	0!''306×0!''206, -84.64°	40.0	0.30

a: The intensity sensitivity is represented by the image rms measured on the smoothed images. b: The mass sensitivity is derived based on the intensity sensitivity assuming that it is purely contributed by optically thin thermal dust emission and with a dust temperature of 20 K.

2. Data Analysis and Results

Calculation of Spectral Index in each Pixel

We retained only the pixels with high signal-to- $S_{\nu} \propto \nu^{\alpha}$ noise ratios in both bands and performed spectral $\alpha(\nu) = \frac{\partial \log S_{\nu}(\nu)}{\partial \log \nu}$ index calculations on these pixels. $\alpha(\nu) = \frac{\partial \log S_{\nu}(\nu)}{\partial \log \nu}$

Identification of Cloud Cores

We have smoothed the band 3 & 6 continuum images to a common resolution (0.3" * 0.2", ~2000 AU).

RA (J2000)

Dendrogram: An algorithm for identifying dense cores in images.

Band 3 rms = 0.0097 mJy/beamBand 6 rms = 0.045 mJy/beamDense cores identified with >5 rms criteria 75 cyan contours: cores identified in band6 only 33 purple contours: cores identified in band 3&6

9 red contours: cores identified in band3 only

Calculation of Spectral Index

Spectral index in each core

All core identified by band6 have spectral indices greater than 2, indicating that these radio sources are generated by optically thin dust emission.

Fragmentation of Filaments

Isothermal cylindrical model

Derive the critical mass per unit length				
expected from the isothermal cylindric				
collapse models				
$(M/l)_{\rm crit} = 2\sigma_v^2/G = 465 \left(\frac{\sigma_v}{1 \text{ km s}^{-1}}\right)^2 M_\odot \text{ pc}^{-1}$				
$(M/l)_{crit} = 834.954 M_{\odot} pc^{-1}$				
$(M/l)_{obs} = 939.526 M_{\odot} pc^{-1}$				

Critical value ~ observed value	Critica	l valu	le~O	bser	ved	val	lue
---------------------------------	---------	--------	------	------	-----	-----	-----

Consistent with the isothermal cylindrical model and filamentary fragmentation scenario

idth	$(M/l)_{crit}$ $(M_{\odot}pc^{-1})$	$(M/l)_{obs}$ $(M_{\odot}pc^{-1})$
	834.954	939.526

MST Algorithm

Spatial Core Distribution & Mass Segregation

Q > 0.8, Q is correlated with centrally condensed spatial distributions with radial density profiles of the form. $Q \simeq 0.8$, it implies uniform density and no Q < 0.8, Q is associated with the fractal dimension.

To quantify mass segregation, we use the mass segregation ratio (MSR), Λ_{MR} , as defined by Allison et al. (2009) and $\Gamma_{\text{\tiny MR}}$ as defined by Olczak et al. (2011), both based on the MST method.

In fact, the Λ_{MSR} method can provide more accurate calculations, so we will primarily utilize the Λ_{MSR} method for analysis.

3. Summary

- Why we observed the Central Molecular Zone and cloud 'e' with ALMA bands 3&6 a unique environment with low star formation efficiency.
- 2. Data analyses & results: smoothing continuum images of bands 3 & 6, core identification using dendrogram, calculation of spectral indices, fragmentation of filaments, spatial core distribution, and mass segregation.
- 3. These results suggest that the massive star cluster currently forming in cloud e undergoes similar processes as protoclusters in the Galactic disk, through turbulence-mediated filamentary fragmentation, hierarchical clustering, and primordial mass segregation.

Thanks !

Appendix

The full table of dense cores and the figure of spectral index are put in this link: https://foisliu.github.io/resume/appendix.pdf